Search Results

Documents authored by Li, Jing


Document
Precise Scheduling of DAG Tasks with Dynamic Power Management

Authors: Ashikahmed Bhuiyan, Mohammad Pivezhandi, Zhishan Guo, Jing Li, Venkata Prashant Modekurthy, and Abusayeed Saifullah

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
The rigid timing requirement of real-time applications biases the analysis to focus on the worst-case performances. Such a focus cannot provide enough information to optimize the system’s typical resource and energy consumption. In this work, we study the real-time scheduling of parallel tasks on a multi-speed heterogeneous platform while minimizing their typical-case CPU energy consumption. Dynamic power management (DPM) policy is integrated to determine the minimum number of cores required for each task while guaranteeing worst-case execution requirements (under all circumstances). A Hungarian Algorithm-based task partitioning technique is proposed for clustered multi-core platforms, where all cores within the same cluster run at the same speed at any time, while different clusters may run at different speeds. To our knowledge, this is the first work aiming to minimize typical-case CPU energy consumption (while ensuring the worst-case timing correctness for all tasks under any execution condition) through DPM for parallel tasks in a clustered platform. We demonstrate the effectiveness of the proposed approach with existing power management techniques using experimental results and simulations. The experimental results conducted on the Intel Xeon 2680 v3 12-core platform show around 7%-30% additional energy savings.

Cite as

Ashikahmed Bhuiyan, Mohammad Pivezhandi, Zhishan Guo, Jing Li, Venkata Prashant Modekurthy, and Abusayeed Saifullah. Precise Scheduling of DAG Tasks with Dynamic Power Management. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 8:1-8:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bhuiyan_et_al:LIPIcs.ECRTS.2023.8,
  author =	{Bhuiyan, Ashikahmed and Pivezhandi, Mohammad and Guo, Zhishan and Li, Jing and Modekurthy, Venkata Prashant and Saifullah, Abusayeed},
  title =	{{Precise Scheduling of DAG Tasks with Dynamic Power Management}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{8:1--8:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.8},
  URN =		{urn:nbn:de:0030-drops-180372},
  doi =		{10.4230/LIPIcs.ECRTS.2023.8},
  annote =	{Keywords: Parallel task, mixed-criticality scheduling, energy minimization, dynamic power management, cluster-based platform}
}
Document
APPROX
Maximizing Throughput in Flow Shop Real-Time Scheduling

Authors: Lior Ben Yamin, Jing Li, Kanthi Sarpatwar, Baruch Schieber, and Hadas Shachnai

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
We consider scheduling real-time jobs in the classic flow shop model. The input is a set of n jobs, each consisting of m segments to be processed on m machines in the specified order, such that segment I_i of a job can start processing on machine M_i only after segment I_{i-1} of the same job completed processing on machine M_{i-1}, for 2 ≤ i ≤ m. Each job also has a release time, a due date, and a weight. The objective is to maximize the throughput (or, profit) of the n jobs, i.e., to find a subset of the jobs that have the maximum total weight and can complete processing on the m machines within their time windows. This problem has numerous real-life applications ranging from manufacturing to cloud and embedded computing platforms, already in the special case where m = 2. Previous work in the flow shop model has focused on makespan, flow time, or tardiness objectives. However, little is known for the flow shop model in the real-time setting. In this work, we give the first nontrivial results for this problem and present a pseudo-polynomial time (2m+1)-approximation algorithm for the problem on m ≥ 2 machines, where m is a constant. This ratio is essentially tight due to a hardness result of Ω(m/(log m)) for the approximation ratio. We further give a polynomial-time algorithm for the two-machine case, with an approximation ratio of (9+ε) where ε = O(1/n). We obtain better bounds for some restricted subclasses of inputs with two machines. To the best of our knowledge, this fundamental problem of throughput maximization in the flow shop scheduling model is studied here for the first time.

Cite as

Lior Ben Yamin, Jing Li, Kanthi Sarpatwar, Baruch Schieber, and Hadas Shachnai. Maximizing Throughput in Flow Shop Real-Time Scheduling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 48:1-48:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{benyamin_et_al:LIPIcs.APPROX/RANDOM.2020.48,
  author =	{Ben Yamin, Lior and Li, Jing and Sarpatwar, Kanthi and Schieber, Baruch and Shachnai, Hadas},
  title =	{{Maximizing Throughput in Flow Shop Real-Time Scheduling}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{48:1--48:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.48},
  URN =		{urn:nbn:de:0030-drops-126510},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.48},
  annote =	{Keywords: Flow shop, real-time scheduling, throughput maximization, approximation algorithms}
}
Document
Elastic Scheduling for Parallel Real-Time Systems

Authors: James Orr, Chris Gill, Kunal Agrawal, Jing Li, and Sanjoy Baruah

Published in: LITES, Volume 6, Issue 1 (2019). Leibniz Transactions on Embedded Systems, Volume 6, Issue 1


Abstract
The elastic task model was introduced by Buttazzo et al.~in order to represent recurrent real-time workloads executing upon uniprocessor platforms that are somewhat flexible with regards to timing constraints.  In this work, we propose an extension of this model and apply it to represent recurrent real-time workloads that exhibit internal parallelism and are executed on multiprocessor platforms. In our proposed extension, the elasticity coefficient - the quantitative measure of a task's elasticity that was introduced in the model proposed by Buttazzo et al. - is interpreted in the same manner as in the original (sequential) model. Hence, system developers who are familiar with the elastic task model in the uniprocessor context may use our more general model as they had previously done, now for real-time tasks whose computational demands require them to utilize more than one processor.

Cite as

James Orr, Chris Gill, Kunal Agrawal, Jing Li, and Sanjoy Baruah. Elastic Scheduling for Parallel Real-Time Systems. In LITES, Volume 6, Issue 1 (2019). Leibniz Transactions on Embedded Systems, Volume 6, Issue 1, pp. 05:1-05:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{orr_et_al:LITES-v006-i001-a005,
  author =	{Orr, James and Gill, Chris and Agrawal, Kunal and Li, Jing and Baruah, Sanjoy},
  title =	{{Elastic Scheduling for Parallel Real-Time Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{05:1--05:14},
  ISSN =	{2199-2002},
  year =	{2019},
  volume =	{6},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LITES-v006-i001-a005},
  doi =		{10.4230/LITES-v006-i001-a005},
  annote =	{Keywords: Parallel real-time tasks, multiprocessor federated scheduling, elasticity coefficient}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail